

2018 BREECH FLYSTRIKE RD&E TECHNICAL UPDATE

Fly Genome Research Update

Dr Trent Perry – The University of Melbourne 17 July 2018

Australian Wool Innovation Limited

Projects and our teams

Genetics of Blowfly Parasitism - Overview

Features of the draft genomes	Draft 1 (458 Mb)	
N50 length (bp); total # >N50 in length	744,413; 165	
N90 length (bp); total # >N90 in length	126,471; 736	
BUSCO (complete; fragmented; missing)	2594; 52; 153	

Measures of genome quality indicate a significant improvement in the last 3 years

Predicted Gene set of L. cuprina

Gene Prediction Comparison	Draft 1 (14,544 genes)	(12	
Genes supported by expression data	10,121 genes	10	
Single-copy orthologues (4 spp.)	4,106 genes	4	
Single-copy orthologues (1 sp.)	12,160 genes	11	
Genes unique to the blowfly	2,062 genes	Ę	

The number of unique genes in the blowfly genome is now much lower due to the large amount of sequencing of genomes from other organisms over the last three years.

2018

2015

Genetics of Blowfly Parasitism - Overview

Development of a vaccine against flystrike

Lessons from previous studies:

- need to understand the problem in more detail to develop a vaccine
- 1. We need to identify better antigens. New methods and the blowfly genome will facilitate this.
- 2. Require a more detailed knowledge of the biological interactions between blowfly larvae and sheep
- 3. Have to understand the type of immune response required to provide protection to sheep

Development of a vaccine against flystrike

Technology has come a long way

- ✓ Genomics
- ✓ Transcriptomics
- ✓ Proteomics
- ✓ Gene manipulation
- ✓ Immunology
- ✓ Adjuvant chemistry
- ✓ Delivery systems
- ✓ Recombinant technology

New tools are now available to examine and dissect the Host/Parasite interaction

Identification of genes important for larval development

Identification of genes important for larval development

Now have a profile of blowfly gene expression during larval development on sheep

- this has revealed genes that are present during the life stages we want to target

Predicting those genes that might be useful vaccine candidates

From the larval gene expression patterns:

- Identifying functional domains and gene orthologues helps us understand the types of pathways that are important for development
- Filter this list for the genes of interest
 - Proteins excreted or secreted from the larvae
 - That have early and consistent expression
 - Blowfly specific genes (function unknown)

	Predicted functions				
1	Sterol sensing				
2	chitin binding				
3	chitin deacetylase				
4	extracellular matrix				
5	laminin				
6	leucine rich repeat				
7	midgut cell matrix				
8	mucin				
9	peptidase				
10	protease				
11	unknown				
12	unknown				
13	unknown				
14	chitin binding domain				
15	cuticle protein				
16	unknown				
17	orphan				
18	orphan				
19	orphan				
20	orphan				

Natural population sampling

- Blowfly collection conducted in 2017/2018 season
- Sequencing samples from pooled populations
- Will allow us to confirm candidates have conserved protein sequences
- This would be important for widespread effectiveness of any vaccine

STATE	#samples	# maggots	L. cuprina identified	# locations
VIC	86	6	80	7
WA	23	0	23	2
NSW	26	1	25	2
TAS	8	1	7	2
QLD	19	1	18	4
TOTAL	162	9	153	17

Current work to validate vaccine candidate genes

Look at research from similar genes in other insects and if there are known fitness phenotypes

- Are they likely to be essential?

On-going work to validate vaccine candidate genes

- Gene knockdown (RNAi)
- Evaluating impact of disrupting these on larval growth and development

Developing Gene Knockout Technology - CRISPR

- Model organisms make a significant contribution to our knowledge of gene function
- Analysis in model systems can bridge some of the gaps
 - Conserved gene functions
- In some cases genetic manipulation of *L. cuprina* is most appropriate
 - **Orphan** genes
 - Establishment of myiasis

Require a tool to manipulate the blowfly

- This tool exists CRISPR/CAS9
- A genetic tool adapted across a wide range of organisms
 - Allows editing of genomic DNA
 - The nuclease (CAS9) cuts DNA in vivo
 - The sites cut are determined by specific guide RNA sequences
 - We can detect these events using molecular diagnostics

We can use this to examine any gene of interest in the blowfly

Future work to develop new tools and their potential to identify new solutions

To understand the importance of different genes we need to determine the effect when their function is lost or disrupted

Current work has now established a CRISPR/CAS9 technique allowing deletion of specific genes in the blowfly.

Created a knockout of two genes; *white* – A "blind" fly *Orco* – A fly that cannot smell

Next steps are to introduce better genetic tools,

- Provide greater capacity to examine blowfly biology
- Prepare for future control options

A biological option for blowfly control? Identification of Wolbachia in field populations of L. cuprina

Infected males are incompatible with uninfected females

Wolbachia kills infected males

From 2017/2018 Natural population collection

- 162 samples analysed, 77% had Wolbachia
- Present in blowfly samples from all states in the collection

Wolbachia in an animal cell

To come up with methods to control this pest we need to be able to understand and dissect its biology

Genetics of Blowfly Parasitism

- A reliable, detailed and accessible genome resource
- Greater knowledge of the biology of *L. cuprina* during parasitism and host seeking
- Confirmation this approach can identify genes critical to *L. cuprina* development.

Development of gene knockout technology – CRISPR

- Created deletions in two genes have shown the technology works in blowflies.
- Can now use this to better understand a range of other potential gene targets

Resources developed provide tools and ideas to stimulate further Blowfly research;

- MSc and PhD student projects training the next generation of researchers
- **Competitive Australian Research Council project applications**

To come up with methods to control this pest we need to be able to understand and dissect its biology

Pathway to a vaccine

- This work delivers the initial steps identifying the genes and establishing methods to examine them in detail.
- Future work over the next 3-5 years should examine the ability of these and further identified genes to provide protection at levels that would be of value to growers.
- This will include testing in blowflies and preliminary trials of promising candidates in sheep to establish sufficient evidence and levels of efficacy to attract investment by an industry partner. We would work with them to deliver a viable, commercial vaccine.

Acknowledgements

Australian Wool Innovation

Current and ongoing project funding

School of BioSciences and Faculty of Veterinary and Agricultural Sciences

Facilities – Molecular labs and equipment, Blowfly rearing rooms, Sheep trial pens

Collaborators

Dr Clare Anstead, Prof Philip Batterham, Prof Robin Gasser, A/Prof Vern Bowles Ross Hall, Tinna Yang, Natália Hernandes Dr Neil Young, Dr Pasi Korhonen, Dr Andreas Stroehlein

Blowfly collectors

Volunteers across Australia, trapping and returning flies for analysis

Australian Government Department of Agriculture and Water Resources

Science and Innovation Awards for Young People in Agriculture, Fisheries and Forestry

This publication is based on information presented at the Australian Wool Innovation Limited (AWI) National Wool Research and Development Technical Update on Breech Flystrike Prevention held on 17th July 2018. Some information in this publication has been contributed by one or more third parties and licenced to AWI, and AWI has not verified whether this information is correct. This publication should only be used as a general aid and is not a substitute for specific advice. Any reliance on the information contained in this publication is done at your own risk and to the extent permitted by law, AWI and any third party contributors exclude all liability for loss or damage arising from the use of the information in this publication. Except to the extent permitted under Copyright Law no part of this publication may be reproduced by any process, electronic or otherwise without the specific written permission of AWI. Neither may information be stored electronically in any form whatsoever without such permission. AWI gratefully acknowledges the funds provided by the Australian government to support research, development and marketing of Australian wool. GD2792